
In the cartoon version of evolution that is often employed by critics of the theory, a new protein (B) can arise from an ancestral version (A) by stepwise evolution only if each of the intermediates between A and B are functional in some way (or at least not harmful). This sounds reasonable enough, and it's a good starting point for basic evolutionary reasoning.
But that simple version can lead one to believe that only those mutations that help a protein, or leave it mostly the same, can be proposed as intermediates in some postulated evolutionary trajectory. There are several reasons why that is a misleading simplification – there are in fact many ways in which a mutant gene or protein that seems to be partially disabled might nevertheless persist in a population or lineage. Here are two possibilities:
1. The partially disabled protein might be beneficial precisely because it's partially disabled. In other words, sometimes it can be valuable to turn down a protein's function.
2. The effects of the disabling mutations might be masked, partially or completely, by other mutations in the protein or its functional partners. In other words, some mutations can be crippling in one setting but not in another.
In work just published by
Joe Thornton's lab at the University of Oregon*, reconstruction of the likely evolutionary trajectory of a protein family (i.e., the steps that were probably followed during an evolutionary change) points to both of those explanations, and illustrates the increasing power of experimental analyses in molecular evolution.