Showing posts with label Homology. Show all posts
Showing posts with label Homology. Show all posts

20 February 2017

When a GAP is not a GAP: ARHGAP11B, the mysterious human-specific gene

A truly human-specific gene, not merely a human-specific version of an animal gene or a mammal gene or a primate gene — that is something particularly interesting. Given that the human genome is 96% identical to that of our closest relatives (chimps and bonobos), and given that so much of those genomes is composed of mobile elements that are unlikely to end up being genes at all, I and perhaps others long thought that human-specific genes would be something pretty rare.

But there they are — genes by every definition, that code for protein and are expressed in human tissues, that are unique in humans. One of the most interesting is a gene that brings together some of my personal favorite topics in biology: brain development, cellular signaling systems, and of course evolution. The gene goes by the unfortunate "name" of ARHGAP11B.

I do consider ARHGAP11B to be a unique human gene, but its name betrays its evolutionary history and its membership in a family of genes, so it's not completely unique (specifics to come). That family is the family of GAPs, a group of proteins that were the focus of my postdoctoral research years ago. GAP stands for "GTPase-activating protein," and besides being a typical morsel of biochemical jargon, the phrase is a bit of an insult to the roles played by these proteins in cellular signaling systems.

16 September 2011

New limbs from old fins, part 2

Titktaalik roseae.
Image from
https://tiktaalik.uchicago.edu/index.html
The second post in my series on limb evolution is now up at the BioLogos site. This installment reviews the fossil evidence on fin-to-limb evolution, introducing the famous Tiktaalik. Next up: evidence from developmental biology.
The first post at BioLogos outlined limb structure and some historical background. The series at BioLogos was spawned by an idea here at QoD, which aimed to discuss some new findings in the fins-to-limbs story. Those new findings will be discussed in the final installment of the series at BioLogos.

*Edit July 2020: The series was consolidated into a single article on the BioLogos site. The link now goes to that single article.


08 September 2011

New limbs from old fins, part 1

Last month, I started a series on the topic of limb evolution, here at Quintessence of Dust. That series has been transformed (through a series of intermediates) into a series of posts* at the BioLogos site. The first installment is now up, and it provides an expanded introduction to the topic and a little historical context. Subsequent posts will tackle fossils, developmental biology, genetics, the explanatory role of design, and related themes.

So go check out the introduction, and feel free to contribute comments, questions and suggestions here. And enjoy the image below, from Wellcome Images, which is featured in the post at BioLogos. Cool, huh?


*Edit July 2020: The series was consolidated into a single article on the BioLogos site. The link now goes to that single article. 

03 July 2009

Deep homology and design: why Notch?

The Notch signaling pathway is a golden oldie of genetics in two ways. First, it's a system that was first described at the dawn of modern genetics – named by its founder, Thomas Hunt Morgan – and used to establish some of the most basic principles of "the physical basis of heredity," as Morgan put it. (His book by that title is a founding document of modern genetics, describing in 1919 what we now call chromosomes without any knowledge of their chemical makeup.) Second, it's a system now known to be as ancient as animals themselves.

Why Notch? The name refers to the appearance of some of the first mutant fruit flies described by Morgan and his colleagues in their famous work in the early 20th century. They found flies with notched wings, and found that the trait was dominant.

Figure 1 from T.H. Morgan, "The Theory of the Gene." American Naturalist 51:513-544, 1917.

So aside from its importance in evolution and development, Notch is of historical interest to genetics. Now, Morgan was interested in Notch (the gene name is capitalized because the original trait is dominant, in case you're wondering) because of its mode of inheritance, not specifically because of its biological effects. (I mean, who cares about flies with notched wings?)

But twenty years later, things got more interesting when a different mutation in Notch was found to cause a weird (and lethal) overgrowth of the nervous system. Interesting... then, as geneticists began to probe the genetics of animal development 50 years after Morgan's initial discoveries, using the fruit fly as a model, Notch started turning up again and again. Problems in Notch signaling led to developmental problems all over the place: brain, eyes, gut, wings, bristles.

By the beginning of the 1990's, geneticists had figured out why its activity is so central to proper development: Notch controls a crucial type of cell-to-cell interaction that leads to a change in cell fate. And they had found Notch signaling in animals of every kind, including in humans, mediating the same kinds of inductive developmental interactions. It's not as complicated as it might sound – in such an interaction, two cells interact physically (they have to touch) and after the interaction one or both of the cells changes its developmental fate, choosing to become, say, a nerve cell or a skin cell. That weird brain overgrowth in the flies with no Notch activity results from a failure of cells to communicate in this way, such that all the cells on the outside of the fly's head become brain cells. (Flies, like most animals, prefer to have some skin over their brains, but in these mutants there's very little skin and lots of extra brain. Ick. See Figure 1 of this recent paper in BMC Biology for pictures; the green stain indicates nerve cells and the second animal down has the nasty trait.)

The point is that Notch signaling involves direct cell contact, and typically leads to cells making decisions about what to do when they grow up. So how does it work? Well, we know an awful lot about this particular system, and there are myriad details of mechanism and control that I'm going to skip. The very basic outline is as follows. Some cells make the Notch protein, which is a receptor. Other cells make the Delta protein, which is the signal that activates the receptor. (One useful analogy is that of locks and keys: Notch is the lock, Delta is the key.) Both proteins are displayed on the cell surface. When the two cells come into contact, the Delta protein on one cell activates the Notch protein on the other. When Notch becomes activated, it gets chopped into at least two pieces. One piece leaves the surface of the cell and travels inward to the nucleus of the cell. There, in collaboration with other proteins, it causes changes in gene expression, meaning that some genes are turned on or up and others are turned off or down.

This mode of signaling is unique and extraordinary. What we have is a signaling system that takes cell-to-cell contact and converts it directly into changes in gene expression.

Now, let's think carefully about this. We have a system of receptors and activators, in the form of Notch proteins (there are at least four in humans) and Delta proteins (there are several in humans, in a few different protein families), which serve a critical and unique purpose in cell-to-cell signaling. The function is conserved in all known animals, and that's not surprising – having cells send messages to their immediate neighbors, directing them to adopt particular fates, is key to constructing tissues and organs. I hope you'll agree that we should expect to see these inductive mechanisms in the development of complex organisms. More to the point, one should expect this regardless of one's stance on questions of "intelligent design."

Here's what is surprising. The same Notch proteins are used for this purpose in every known animal. And here's why that's surprising: as far as we know, there's no reason to insist on those particular proteins playing those particular roles. It's easy to envision – and then design and create – a set of locks and keys that bear no resemblance to Notch or Delta but that can accomplish these somewhat basic purposes just as well. There's no need for such a specific solution to a basic challenge. Why does every animal use Notch? Recall the previous post in this series and how we approached this question of common design. Here, again, are our options.
  1. These inductive signaling events could only be accomplished by Notch. There is a design constraint, currently unknown, which forces that choice. It may seem that the system could have been effectively constructed using a different lock-and-key combination, but in fact it could not function (or function well) any other way.
  2. These inductive signaling events could be mediated in various ways, but the choice of Notch has been forced by common ancestry. The earliest animals settled on this choice, and their descendants have used it ever since.
  3. These inductive signaling events could be mediated in various ways, but an intelligent designer has repeatedly chosen Notch for reasons known only to her/him/it.
Option #1 is, in my view, unreasonable. The system is not complicated in its basic design. There are no clear constraints on the choice of lock and key. A designer who is crafting an organism from the ground up need not select that particular lock/key combination, and someone who intends to argue otherwise needs to demonstrate how that particular combination is superior.

Option #3 is, I think, perfectly reasonable. The only problem is that one must know quite a lot about the designer to begin to surmise her/his/its goals and proclivities. Without that knowledge, it is no more reasonable to assume a preference than it is to assume a constraint.

The point is not that we can ever rule out preferences or other characteristics of a creator or designer. The point is that we can rarely make explanatory use of them. Consider that while we may assert that the Creator/Intelligent Designer prefers that pine trees have needles, we would not advance that as a useful explanation for why pine trees have needles. Specifically, we would never advance that as an alternative explanation in place of one that notes that today's pine trees have the same needles that last century's pine trees had, by virtue of biological ancestry.

Notch signaling represents one of the classic examples of deep homology. It seems to me that design theorists need to deal with deep homology before they can ever be taken seriously as scientific thinkers. Deep homology is crying out for explanation, and those who believe that the biosphere cries "design" are remiss in not offering a serious design-based explanation for the fact that every animal on the planet uses the same lock-and-key mechanism to achieve basic cell-to-cell inductive communication.

Next, we'll look at a recent and very interesting example of new findings that illustrate the striking conservation of Notch-mediated developmental events – an example of deep homology that could arise from the very root of animal ancestry.

09 June 2009

Deep homology and design: common design and its implications

Consider these not-so-random samples from the animal world: a cockroach, a zebrafish, a mouse. What do these creatures have in common?

Left to right: American cockroach (Periplaneta americana), zebrafish (Danio rerio), house mouse (Mus musculus). Cockroach image from Wikimedia Commons, zebrafish and mouse from Wellcome Images.

Well, they're all animals and that means they're all eukaryotes, for example. They all have DNA-based genomes. They all like water to some extent. They all have muscles that cause them to move. And so on.

But let's think of them in a different way. Let's think of them as things that exhibit design. (Not Design. Just design.) We see similarities like the ones we just listed, and we see some dramatic differences. Insect, exoskeleton, open circulatory system. Fish, gills, egg-laying. Mammal, milk, hair, live birth, temperature control. We can see elements of common design (limbs and joints, eyes, nerves) and elements of specialized design (lungs, fins, antennae).

Now let's forget everything we know about common descent and adopt an Intelligent Design perspective. This isn't hard to do: just think of each animal as a machine that was designed to be the way it is. The machines have some common design elements and some specialized design elements. Now this is important: let's assume that each machine was designed separately, such that design decisions were made on a case-by-case basis (for each type of machine, not for each individual machine). In other words, let's think of the cockroach as designed from the ground up to be a cockroach, and the fish and the mouse likewise. Simple, right? I think so.

Now, let's look under the hood of each machine and ask detailed questions about how it's built, again with the assumption that it was designed. Not just its overall structure, but also the procedures used for its assembly. Let's look, in other words, at its molecular machinery – machinery for signaling between cells and tissues, machinery for signaling within individual cells, machinery for directing gene function during development and normal function. And let's focus specifically on the signaling systems in these creatures and in their developmental stages. What would we expect to see? Well, let's consider some basic scenarios.

1. Maybe the signaling systems will be roughly the same – or even largely the same – in all three animals. This would imply that such systems are hard to assemble and perhaps even harder to tune and maintain, and therefore we would conclude that there are very few ways to make a working system. The only other explanation would refer to preferences on the part of the designer, who was unconstrained by design limitations but nevertheless insisted on doing things a certain way.

2. Maybe the signaling systems will differ between the three animals, to such an extent that it is clear that the choice of a system is somewhat arbitrary, arbitrary in the sense that the choice of a particular system is largely independent of the context or the function that is specified. The implication is that there are plenty of ways in which cells and molecules can communicate, and no strong constraints on the designer's choices.

Now of course we may find examples of both scenarios in our analysis. Perhaps some signaling systems will appear to be highly constrained while others will be largely different among the three species. The point, though, is this: when examining machines that were separately designed, common design implies either design constraint or designer preference. Divergent design implies a lack of design constraint. There are no further options: either the designer was constrained, or she wasn't; if unconstrained, she could nevertheless choose a favorite scheme and leave the impression that she was somehow constrained.

Designer constraint could arise in various ways. It could be that a particular signaling system is uniquely suited to a particular purpose. It could be that a particular signaling system is highly robust to damage or other challenges. It could be that there are only a handful of different possibilities due to limitations in the raw materials. One variation of that last possibility would look a lot like how evolution is known to work: the designer tweaks the system a little at a time, working with the materials supplied by each generation and therefore constrained by common descent.

Design proponents can be stunningly cavalier about all this. "Common elements in animal biology? Well of course! Common design!" But wait: common design implies either design constraint (that was the best way to do it – or the only way to do it) or designer preference (she just happens to like it that way), and those are dramatically different from an explanatory standpoint.

It turns out that signaling systems in animal development are so universally conserved that they require an extraordinary explanation. The commonality of the elements is so striking that it took most biologists by surprise when it first became evident, and remains one of the most remarkable facts of developmental biology today. We'll look at some recent advances in this area of evo-devo in posts to come.

But one last thing: I'd like to try a thought experiment to illustrate how we might approach questions of signaling in animal cells and embryos. Consider a group of 50 people who have agreed to help with your experiment. You divide them into pairs and tell each pair to send one person out of the room. Then you tell the remaining people to greet their partners upon their return, using a single word of their choosing that is certain to convey the greeting. You observe that all of the people employ either "hello" or "hi" for this purpose.

Question: would you conclude that "hello" and "hi" are uniquely suited for the task, and that no other word could possibly have worked? I hope you would seek another explanation and perhaps consider trying the experiment in, say, Shanghai or Guadalajara. You would conclude, I wager, that the word itself is of little explanatory value. In other words, the choice of a word was constrained, but not by anything specific to the word itself. In Shanghai, it's "ni hao." Maybe somewhere it's "duuuuuuude." And in a matter of minutes, you could change it to "ahoy" or "blorp" or anything you want.

And if you really wanted to probe the notion of constraint in human conversation, you would ask your 25 pairs of subjects to come up with an identifying word or phrase that they could call out to find each other in the dark. You would find, of course, that the choice of that word or phrase would be almost completely unconstrained.

What does all this have to do with signaling systems and design? That's for next time. Till then, blorp.

08 June 2009

Deep homology and design: a new series

Recently I was reading a superb review article [doi] on the subject of a famous and important cellular signaling pathway called the Notch pathway. The author, Mark Fortini of Thomas Jefferson University, quoted James Puckle (an 18th-century English inventor and writer) on the "wonderful frame of the human body" in which "so many strings and springs" which all must "be in their right frame and order" for life and concluding that "it is next to a miracle we survived the day we were born." (If you must know, it's maxim #914 in The Club, in a section called "Death.")

This reminded me of some personal tragedy in our own family, after which Puckle's conclusion was repeated almost verbatim. It also reminded me of my need to write about the amazing homology of developmental signaling mechanisms in animals. For many months, I've listed an article on "deep homology" as the subject of my next Journal Club. But this topic won't fit into one article review, so I've decided to turn it into a little series.

Here's what Fortini writes in his introduction, after quoting Mr. Puckle:
Surprisingly, research over the past few decades has revealed that the orderly differentiation and arrangement of these many physiological ‘‘strings and springs’’ are controlled by a relatively small number of developmental signaling pathways. These pathways, including the Notch, Ras/MAPK, Hedgehog, Wnt, TGFβ, and JAK/STAT pathways, among others, are widely conserved throughout the animal kingdom and they cooperate throughout development to pattern a diverse array of tissues in different animal species.
The lingo might seem strange, but I hope the point is clear. The vast diversity of animal life, with "endless forms most beautiful," is assembled through the action of a small set of signaling systems. And, remarkably, the systems are used in the same ways in animals that couldn't be more different in behavior or structure.

This fact raises interesting questions about design and evolution. Why so few systems? Why are they used again and again, for the very same purpose? Are these choices forced by design constraints of some kind, or is there another explanation? Could it have been otherwise? Can it be otherwise? I'll tackle those questions while discussing some recent experiments in evolutionary developmental biology, or evo-devo.

And what of this phrase "deep homology"? It was coined by some of the founding minds of evo-devo – Neil Shubin, Cliff Tabin and Sean Carroll – as they considered the fact that animal limbs of every kind are "organized by a similar genetic regulatory system that may have been established in a common ancestor." And we mean limbs of every kind: whale flippers, fish fins, bat wings, human arms, and, amazingly, insect limbs. Such disparate structures may not be evolutionarily homologous (meaning that they were modified from a common ancestor) but the signaling systems that create them are homologous.

This, then, is deep homology: the sharing of signaling mechanisms that are used to create diverse (though often functionally similar) animal structures. So please join me, and maybe we'll lure interesting commenters into the discussion.