Showing posts with label Deep homology. Show all posts
Showing posts with label Deep homology. Show all posts

16 September 2011

New limbs from old fins, part 2

Titktaalik roseae.
Image from
https://tiktaalik.uchicago.edu/index.html
The second post in my series on limb evolution is now up at the BioLogos site. This installment reviews the fossil evidence on fin-to-limb evolution, introducing the famous Tiktaalik. Next up: evidence from developmental biology.
The first post at BioLogos outlined limb structure and some historical background. The series at BioLogos was spawned by an idea here at QoD, which aimed to discuss some new findings in the fins-to-limbs story. Those new findings will be discussed in the final installment of the series at BioLogos.

*Edit July 2020: The series was consolidated into a single article on the BioLogos site. The link now goes to that single article.


08 September 2011

New limbs from old fins, part 1

Last month, I started a series on the topic of limb evolution, here at Quintessence of Dust. That series has been transformed (through a series of intermediates) into a series of posts* at the BioLogos site. The first installment is now up, and it provides an expanded introduction to the topic and a little historical context. Subsequent posts will tackle fossils, developmental biology, genetics, the explanatory role of design, and related themes.

So go check out the introduction, and feel free to contribute comments, questions and suggestions here. And enjoy the image below, from Wellcome Images, which is featured in the post at BioLogos. Cool, huh?


*Edit July 2020: The series was consolidated into a single article on the BioLogos site. The link now goes to that single article. 

03 August 2011

Let's see a show of autopods. Part 1.

The discovery of deep homology was a milestone in the history of evolutionary thought. Anatomical structures in distantly related organisms, structures with only the barest of functional similarities, were found to be constructed under the influence of remarkably similar genetic pathways. The original and classic example from 1989 involves genes controlling pattern in both insects and mammals – the famous Hox genes. Another great example emerged from the study of limb development and evolution in vertebrates, work beautifully described by Neil Shubin in Your Inner Fish.

The idea that the limbs of various animals are homologous – meaning that they are variations on a theme inherited from common ancestors – is certainly not new, with roots in the exploration of 'archetypes' by the great Sir Richard Owen. But deep homology goes, well, deeper, suggesting that even basic themes like 'limb' or 'eye' or even just 'thing-sticking-out-of-the-body-wall' can be identified and seen to be conserved throughout the biological world. And, importantly, deep homology points to genetic mechanisms that underlie basic themes, structural concepts so distinct that they would not be judged to be related by structural criteria alone. Consider, for example, limb development in vertebrates.