26 January 2010

Signature in the Cell: Chapter 1

The chapter is called "DNA, Darwin, and the Appearance of Design." It's a poor start. Meyer sketches some key themes of the rest of the book in this sloppy chapter. Here are those themes (in my words) and some comments.

1. DNA stores information, using a code that is similar to that of a computer. We know a lot about how that works.

2. Life gives the appearance of design. No one disputes that. But the source of the design is, of course, controversial.

14 January 2010

A quick note about a hero

My chapter-by-chapter commentary on Signature in the Cell will resume shortly. But I can't resist writing a little about someone I know who did something extraordinary. Here's the short version.

This friend of mine, we'll call her "Susan," became inspired several months ago while reading accounts of people resisting Nazi occupation during World War II, and especially those who risked their lives (and often lost their lives) working to assist Jews and others targeted by the occupiers. She wondered how/if she would/could do such things. Subsequently, she read a story in our local paper about a grieving father who, in his son's name and honor, had donated a kidney to someone he didn't know, as part of a kidney donation chain. Susan thought, "I can do that." (She's married and has four kids ranging in age from 17 to 9.)

She contacted the local transplant program and found out that such altruistic donations had not occurred in Grand Rapids and that the center didn't have procedures for such an arrangement. But when the program realized Susan was serious, they put the procedures together and began the testing to determine Susan's suitability as a donor. It all culminated in the first altruistic kidney donation in West Michigan on Monday, 11 January. Both Susan and the recipient are doing really well.

Susan is my hero. Somehow, I'm lucky enough to be married to her. We celebrated our 25th wedding anniversary a little more than two weeks ago.

Please look into the kidney donation thing. Think of it as an anniversary gift.

09 January 2010

Signature in the Cell: preliminary observations and prologue

There's not much point in "reviewing" a prologue, so let's start instead with some impressions gleaned from reading the prologue and the first chapter while leafing through the rest of the book.

1. This is clearly a pop-science book and not a serious work of scholarship. That's not an insult, just an observation.

07 January 2010

Signature in the Cell: other reviews

Interestingly, Meyer's book is getting a lot of attention right now. At the Jesus Creed, the excellent RJS is also blogging through the book. At Biologos, a guest piece by Francisco Ayala focuses mostly on theological issues. (I like Ayala a lot. I dislike his post a lot.) The ASA has finally decided to establish some blogs, one of which will host discussions of books. The first book under consideration is Signature in the Cell. (Unfortunately, only ASA members can comment, and that excludes me.) And PZ Myers is reading the book right now. He has already concluded that "there's no poetry in creationism." Well, that's a low blow. Meyer mentions Donne on page 16. What more did PZ expect? A personalized limerick? The Digital Cuttlefish?

06 January 2010

Signature in the Cell: beginning the review

So Stephen Meyer of the Discovery Institute, a founder of the ID movement, wrote a book called Signature in the Cell: DNA and the Evidence for Intelligent Design. It came out last summer, and I ignored it. I ignored it because it didn't seem interesting or important or new, and there's always something interesting and important and new to read. (I recently finished The Road. Wow.) It didn't matter to me that the ID people said it was "groundbreaking" or "seminal" or "a blueprint for twenty-first-century biological science" since they said things like that about Behe's last book. And that is a terrible book, one that reflects very poorly on its author. It seemed reasonable to assume that the ID movement wasn't going to generate any serious new arguments, and that if they did it would be obvious. Signature in the Cell gave no indication that it contained anything new.

20 December 2009

Weasels, clouds and biomorphs, part III

The Blind Watchmaker is a superb book by a masterful science writer. It's not just a book about evolution, or even about how evolution works. It's a book about how evolution explains design, and more specifically how natural selection accounts for design. As I wrote before, I consider chapter 3 to be the most important chapter of the book. The chapter is called "Accumulating small change" and it features two different computer programs that Dawkins uses to teach readers about the effectiveness of selection in evolution. Before we play with the Biomorph program in the next post, allow me to set us up by discussing the importance of the program in Dawkins' argument, and by outlining the logic of the program's design.

First let me try to convince you that chapter 3 really is the heart and soul of the book. The chapter is about gradual, step-by-step evolution resulting from natural selection. And as you might already know, natural selection is what Dawkins considers to be The Big Idea, the idea that answered Paley's seemingly insurmountable challenge. In chapter 2, Dawkins makes this clear. Here's how he starts.
Natural selection is the blind watchmaker, blind because it does not see ahead, does not plan consequences, has no purpose in view. Yet the living results of natural selection overwhelmingly impress us with the appearance of design as if by a master watchmaker, impress us with the illusion of design and planning. The purpose of this book is to resolve this paradox to the satisfaction of the reader....
–The Blind Watchmaker, page 21
Chapter 2 famously focuses on echolocation in bats, and I would buy the book just to read Dawkins' description of the engineering feat that is the little brown bat. (He gleefully recounts the utter incredulity of an audience of biologists when the mere existence of such biological phenomena was first described.) And here's his conclusion.
I hope that the reader is as awestruck as I am, and as William Paley would have been, by these bat stories. My aim has been in one respect identical to Paley's aim. I do not want the reader to underestimate the prodigious works of nature and the problems we face in explaining them. Echolocation in bats, although unknown in Paley's time, would have served his purpose just as well as any of his examples. Paley rammed home his argument by multiplying up his examples. He went right through the body, from head to toe, showing how every part, every last detail, was like the interior of a beautifully fashioned watch. In many ways I should like to do the same, for there are wonderful stories to be told, and I love storytelling. But there is really no need to multiply examples. One or two will do. The hypothesis that can explain bat navigation is a good candidate for explaining anything in the world of life, and if Paley's explanation for any one of his examples was wrong we can't make it right by multiplying up examples. His hypothesis was that living watches were literally designed and built by a master watchmaker. Our modern hypothesis is that the job was done in gradual evolutionary stages by natural selection.
–The Blind Watchmaker, page 37
Chapter 4 builds on chapter 3, and the rest of the book deals with how it might all work. Chapter 3 is Dawkins' attempt to show us the power of cumulative selection, and cumulative selection is The Blind Watchmaker. This is the heart of the matter, and Dawkins' argument (and his world) hinges on the success of this idea.

And so Dawkins tackles the concept of cumulative selection in chapter 3, and as we've already seen, he immediately faces a serious problem: the end result of an evolutionary process is the generation of design, of biological machines that are complex and, more importantly, wildly improbable. In other words, such things "can't just happen." The human mind is prone to a serious error when faced with this challenge. The error is to envision complexity arising spontaneously from chaos, in a single step, and thus to conclude that such things cannot be explained naturally. The error is in bold, and Dawkins addresses it first with the simple and effective Weasel illustration. The illustration is highly effective as a corrective for that error, but it fails as a model of evolution, as I explained in the previous post.

The Biomorph program was Dawkins' more serious attempt at modeling the development of complex structures by cumulative selection. It's important to understand just how central the program really is, and thus why it's so silly to make a big deal out of the Weasel exercise. Chapter 3 is the heart of the book, and the Biomorph program is the soul of chapter 3. The Biomorph program improves on Weasel in two very important ways:

1. It models evolutionary unfolding without a specific goal. The Weasel program "homed in" on a particular goal; the Biomorph program has no such constraint.

2. The entities that evolve in the Biomorph program, called biomorphs, "develop," and their development is controlled by a number of factors ("genes") which change (i.e., mutate) in each generation, so that mutations result in alterations to development and thus to new forms.

The biomorphs are tree-like structures, and they are drawn according to simple rules. (This post is decorated with a few that I made using a nice Java applet.) The rules control the branching of the trees (branch at a certain angle or at a certain point on the existing branch, or branch of a certain length, or whatever). The drawing of a biomorph, then, is a representation of embryonic development. And the rules represent the various processes in development.

It should be fairly easy to see how to model the effects of genes: a gene will influence a rule, by assigning a number to the rule (e.g., branch at a bigger or smaller angle). Reproduction is simple: the biomorphs are redrawn, based on the parent's structure, using the same rules influenced by the same genes. Boring? No: mutation acts to change the numeric value of the genes, randomly changing the value by either +1 or -1. The result is a set of offspring, each differing slightly from the parent by virtue of a single mutation.

So it goes like this. A parent is selected. The subroutine REPRODUCTION runs, and generates random mutations in each of the genes of the parent (there are 9 genes); the new genes are passed to the subroutine DEVELOPMENT, which draws new biomorphs based on the new genes. The result is a set of 9 offspring, each with a different version of one of the parent's genes. One is selected to be the parent of the next generation. Keep doing this, over and over and over, and you get the program EVOLUTION.

But how does selection work in this program? Recall that the major problem with the Weasel illustration was its goal-directed nature. In the Biomorph program, things are different:
...the selection criterion is not survival, but the ability to appeal to human whim. Not necessarily idle, casual whim, for we can resolve to select consistently for some quality such as 'resemblance to a weeping willow'. In my experience, however, the human selector is more often capricious and opportunistic. This, too, is not unlike certain kinds of natural selection.
The Blind Watchmaker, page 57
Selection, in other words, is done by you, the human who is "playing God."

That's the Biomorph program. Next time: what it demonstrates about evolution.

08 December 2009

Weasels, clouds and biomorphs, part II

Back in September I wrote about the silly preoccupation on the part of various anti-evolutionists with the so-called Weasel program, a simple exercise created more than 20 years ago by Richard Dawkins to illustrate the efficacy of cumulative selection in evolutionary scenarios. My main point was that the Weasel program had one very simple purpose (comparing "single-step selection" – which is purely random – to cumulative selection) and constitutes a trivial fraction of the argument in Dawkins' The Blind Watchmaker.

One might think that Dawkins' basic message – that random one-step flying-together of a Shakespearean phrase or a hemoglobin molecule is impossibly unlikely compared to cumulative selection of intermediate stages – is so elementary that no intelligent person would need to consider it more than once. (Once seems like a lot to me in this case, but never mind.) And yet the error (if that's what it is) is shockingly common. (It forms one pillar of poor Cornelius Hunter's whole enterprise, for example.)

Dawkins understood this problem when he wrote The Blind Watchmaker, so before he unveiled the fascinating program that forms the heart of his case for the power of selection, he took one last stab at making the basic outline clear by going back to clouds. Wait...clouds? (Fans of Hamlet are already sighing blissfully; those who don't get the connection between weasels and clouds should read either Act III, Scene II of Hamlet or Chapter 3 of The Blind Watchmaker.) Yep. Dawkins pointed back at what makes cumulative selection work: the things that are evolving must be able to generate related offspring. And that's what clouds can't do.
Clouds are not capable of entering into cumulative selection. There is no mechanism whereby clouds of particular shapes can spawn daughter clouds resembling themselves. If there were such a mechanism, if a cloud resembling a weasel or a camel could give rise to a lineage of clouds of roughly the same shape, cumulative selection would have the opportunity to get going. Of course, clouds do break up and form 'daughter' clouds sometimes, but this isn't enough for cumulative selection. It is also necessary that the 'progeny' of any given cloud should resemble its 'parent' more than it resemble any old 'parent' in the 'population'... It is further necessary that the chances of a given cloud's surviving and spawning copies should depend on its shape.
The Blind Watchmaker, pages 50-51, italics in the original
Hence the Weasel program.

But I noted last time that Dawkins spent a tiny amount of time and text on the Weasel program, and that he declared it to be "misleading in important ways." The most important, by far, is this: the selection that drove the Weasel program was goal-directed. A better simulation of evolution would be one in which selection is more capricious, more "in the moment." (Survival can be capricious; reproduction happens rather decisively "in the moment.")

Dawkins came up with just such a program, and I mentioned it in the previous post. It's a wonderfully simple simulation of the basic aspects of selection-driven evolution: it includes development, reproduction, genes, and selection, and generates "organisms" with shapes instead of a phrase in all caps. We'll look at that program in the next and final post. But if you want to play with a modern version, you'll find plenty of nice implementations out there. So much more fun than studying...or grading.

07 December 2009

Resurrection

So there hasn't been a post on Quintessence of Dust in three months. Here are some reasons for this.
  1. We're in the midst of a distracting crisis at Calvin College right now. I won't talk about it here, but it's very serious and has already affected my relationship with the college.
  2. I recently completed a major writing project, a book that I coauthored with a colleague at Calvin. Not much else to say about that at this point.
  3. I've coauthored two recent review articles with my colleagues at the Van Andel Institute, and we have significantly expanded the scope of our collaboration, with a major new grant proposal in the works.
During this hiatus, I enjoyed a wonderful attack (and a flatulent followup) by a poorly-equipped ID demagogue, Cornelius Hunter. God bless him: he said I'm "the best of the worst." There's not much there, so I'll ignore his criticism and work instead on completing two interrupted series, one on deep homology & design and one on Richard Dawkins' biomorph program. Then we'll get back to regular forays into the current literature, and we'll focus on "junk DNA" a bit more. Biomorphs are next. See you soon.

07 September 2009

Weasels, clouds and biomorphs, part I

There's usually no point in piling on when the minions of the ID movement get their just deserts after some typically brainless culture-war test launch. Consider the responses (by, most notably, Ian Musgrave at the Panda's Thumb) to the most recent rendition of the ID movement's hilariously idiotic fixation on a particular computer program written by Richard Dawkins. It seems there is little to add. But I think something important is being lost in this conversation, probably because the level of the "conversation" is the level of the ID movement. So let's start with a little quiz.

1. True or false: Richard Dawkins' 1986 classic The Blind Watchmaker used a computer model (a simulation) as a key teaching device while explaining the effectiveness of cumulative selection in evolution. The program is the main focus of chapter 3 ("Accumulating small change") of the book.

Answer: True.

2. True or false: the computer program used for this purpose was made available to the public and has since been adapted for free use on the web.

Answer: True.

3. True or false: the computer program in question is called WEASEL (or similar) and it demonstrates the stepwise generation of a famous phrase from Hamlet.

Answer: False.

Now if this surprises you, then either you haven't read The Blind Watchmaker or you haven't read it in a long time. Because even if you've been influenced by the hysterical antics of the ID crowd, you could not long believe its claims about the Weasel program if you had recently read the book. If you haven't recently read The Blind Watchmaker, you might consider a stroll through some representative ID musings on WEASEL followed by a visit to Chapter 3 of the book (and, if you have a copy from 1989 or later, a visit to the two appendices.) The experience could be jarring for those who have a positive view of these arguments by ID apologists.

But if you don't have a copy of The Blind Watchmaker handy, I can help. First, in this post, I'll discuss the Weasel program and its place in the thesis of The Blind Watchmaker – in the context of the current ID fixation on the program. Then I'll introduce the program that Dawkins really did emphasize in the book, a program called EVOLUTION (or later, when it was expanded and made commercially available, The Blind Watchmaker Evolution Simulation program) but commonly known as the biomorph(s) program. In the second post I'll talk more about the biomorph program and its usefulness.

Chapter 3 of The Blind Watchmaker is a tour de force of expository scientific writing. Called "Accumulating small change", the chapter has a single and simple thesis, laid out in the first paragraph:
We have seen that living things are too improbable and too beautifully 'designed' to have come into existence by chance. How, then, did they come into existence? The answer, Darwin's answer, is by gradual, step-by-step transformations from simple beginnings, from primordial entities sufficiently simple to have come into existence by chance. Each successive change in the gradual evolutionary process was simple enough, relative to its predecessor, to have arisen by chance. But the whole sequence of cumulative steps constitutes anything but a chance process, when you consider the complexity of the final end-product relative to the original survival. The purpose of this chapter is to demonstrate the power of this cumulative selection as a fundamentally nonrandom process.
The Blind Watchmaker, page 43, italics in the original
Dawkins immediately tackles the crazy misconception of evolution as a process that is akin to the impossibly improbable flying-together of the parts of a machine in a single step. Echoing Isaac Asimov, he calculates the probability of the spontaneous assembly of a hemoglobin molecule in a single step, and arrives at a number of predictably indescribable magnitude. It can't just happen.

In a 1987 BBC television show , he uses a much better metaphor: the opening of a safe by entering a combination. To open the safe, a banker (or thief) must correctly enter all of the correct numbers, in order, at the same time. His point is: of course it can't "just happen." The concept that Dawkins aims to communicate is this: from an evolutionary perspective, "success" doesn't happen all at once; it is accumulated. Evolutionary change is cumulative change; it's as though the safe opens a little when one correct number is entered, and allows the banker to reach in and get a little money. ("Small change" is the topic, remember.)

This is a very basic and very important aspect of the Darwinian mechanism, and yet it is maddeningly common to see it ignored or completely misunderstood. So in the first few pages of Chapter 3, Dawkins looks for an illustration of the difference between "randomly getting the whole thing right in one fell swoop" and "accumulating random improvements till the whole thing is assembled." He starts with the old saw about monkeys, typewriters and Shakespeare. Choosing a single phrase from Hamlet, "Methinks it is like a weasel," he first calculates the probability of a random character generator (a monkey) spontaneously banging out Hamlet's phrase. The calculation charmingly indicates that there isn't enough time in the universe for such a thing to occur. Yeah, yeah, yeah. Now, it's easy enough to get a computer (even a 1986-vintage machine) to churn out 28-character strings randomly, and so Dawkins describes a program that can do this. Then he introduces the occurrence of cumulative selection in the program, to illustrate its profound effectiveness compared to mere randomness.
We again use our computer monkey, but with a crucial difference in its program. It again begins by choosing a random sequence of 28 letters... It now 'breeds from' this random phrase. It duplicates it repeatedly, but with a certain chance of random error – 'mutation' – in the copying. The computer examines the mutant nonsense phrases, the 'progeny' of the original phrase, and chooses the one which, however slightly, most resembles the target phrase... the procedure is repeated, again mutant 'progeny' are 'bred from' the phrase, and a new 'winner' is chosen.
The Blind Watchmaker, pages 47-48, italics in the original
Dawkins shows that this procedure can get from a random monkey-phrase to "Methinks it is like a weasel" in mere seconds. And the point is simply this: cumulative selection is more effective than mere "randomness" by incomprehensibly gigantic magnitudes. Dawkins makes it very clear that the Weasel program is meant to demonstrate nothing more than that. After pointing out that single-step selection would take a near eternity to type the phrase, he reiterates the simple purpose of the comparison, and the whole weasel exercise:
Actually it would be fairer just to say that, in comparison with the time it would take either a monkey or a randomly programmed computer to type our target phrase, the total age of the universe so far is a negligibly small quantity, so small as to be well within the margin of error for this sort of back-of-an-envelope calculation. Whereas the time taken for a computer working randomly but with the constraint of cumulative selection to perform the same task is of the same order as humans ordinarily can understand, between 11 seconds and the time it takes to have lunch.
The Blind Watchmaker, page 49, italics in the original
Folks, that's all the silly weasel thing was ever about. So what's all the fuss then?

Well, some ID partisans are all agitated about whether Dawkins' program allowed mutations in positions of the string where the correct letter had been hit upon. They wonder: if cumulative selection had gotten us "Methinks it is like a measel", could 'measel' mutate back to 'measer' and thus take the program a step away from the target? And why does this matter? Well, for Dawkins' purposes it really doesn't matter, but the ID scholars seem to think there's a big speed difference. If you're interested you can read some nice work by Wesley Elsberry or Anders Pedersen that shows clearly that it simply doesn't matter.

But. Here's what's lost in all this. Dawkins never intended the silly little weasel exercise to be a persuasive argument for evolution as it actually occurs in the world. In fact, he is quick to point out why it's deficient (remember Bohr models of the atom in grade school?), noting that it is "misleading in important ways." And at that point, he abandons the Weasel program in favor of a simulation that is far better. That simulation, the Biomorph program, is the topic of the entirety of the rest of Chapter 3 of The Blind Watchmaker (and of my next post).

The absurdity of the ID fixation on the Weasel program is hard to capture with mere words. Perhaps this table will help put the two programs into better perspective.

WeaselBiomorph
Number of times program is mentioned* on Uncommon Descent4442
Number of pages devoted to program in The Blind Watchmakerless than 5 45, including two appendices

*All I did was Google the word 'weasel' or 'biomorph' at uncommondescent.com. The two uses of 'biomorph' were in comments by ID critics (one being Wes Elsberry). The uses of 'weasel' surely include insults that aren't references to the program.

The real focus of Chapter 3 of The Blind Watchmaker is the biomorph program. Seven figures, 23 pages, 22 more pages in two appendices which include a small user's manual for the program. The biomorph program constitutes the heart of Dawkins' book and his argument, so much so that the program is named The Blind Watchmaker. The Weasel program was a tiny stepping-stone for Richard Dawkins, a simplistic teaching tool meant to illustrate a single simple point. It's a hill to die on for the ID movement, and that says a lot about the state of that confused community.

01 August 2009

Carnival of Evolution 14

Welcome to Quintessence of Dust and to the 14th Edition of the monthly Carnival of Evolution. Thanks for stopping by, and for supporting scientific carnivalia, members of a taxon that seems to be flirting with extinction.

One good reason to visit a carnival: brain stimulation. Brain Stimulant offers some thoughts and speculations on Free Will and the Brain, touching briefly on themes of selection and adaptation, and he doesn't charge as much as the clinic would.

Another good reason: you can bump into real scientists, the kind who actually work on evolution. Ryan Gregory has a day job as an expert on genome evolution, but somehow finds the time to blog at Genomicron. Recent entries there include fascinating pictures of ongoing field work. For this month's carnival, be sure to read two reviews of the ideas of Stephen Jay Gould, focusing on controversial papers by Gould published in 1980 and 1982. You may find that you have been misinformed about Gould's positions, and you'll surely learn more about evolution.

Michael White at Adaptive Complexity is another blogging scientist, and he writes very clearly about parasitic DNA in Selfish Gene Confusion.

David Basanta is a biologist who runs a cool blog called Cancerevo: Evolution and cancer, which is subtitled "Studying cancer as an evolutionary disease." Check it out, and don't miss his recent piece on Stem cells and ecosystems.

Zen Faulkes is a biologist who blogs at Neurodojo. That's cool enough, but the subtitle of that blog is "Train your brain." Hey, this could be a theme for the whole carnival! He recently wrote about a walking bat in New Zealand. Bat evolution...we can't get enough of that. I've written about it myself.

Brains and their origins come up in an extensive discussion of early animal evolution at AK's Rambling Thoughts. The post is The Earliest Eumetazoan Progression.

At The Loom, the peerless Carl Zimmer discusses AIDS in chimps and the relevance of the story to conceptions of scientific progress. AIDS and The Virtues of Slow-Cooked Science is engrossing and important. And John Wilkins discusses some new fossil apes in an excellent recent post at Evolving Thoughts.

John Lynch reviews a new book on Alfred Russell Wallace. Caveat lector. Brian at Laelaps takes us on a historical tour of the work of Florentino Ameghino. Are those elephants or not? Brian's discussion is typically excellent.

At The Spittoon, AnneH discusses new findings concerning both the past and the future of the mammalian Y chromosome.

Hoxful Monsters is a future host of this carnival; Nagraj recently reviewed some recent work on pattern formation in the development of spiders. Wonderful evo-devo stuff.

Someone at Wired wrote some swill about the "10 Worst Evolutionary Designs" which annoyed a few smart bloggers. At Deep-Sea News, Dr. M sets the record straight. The title is self-explanatory: Worst Evolutionary Designs? No! Brilliant Solutions to the Complexity of Nature and Constraints.

Larry Moran at Sandwalk is attending a conference entitled Perspectives on the Tree of Life. He's posted reviews of days one and two so far.

And that's our carnival. Thanks for reading, and on the way out I hope you'll look at my nearly-complete series on Notch and deep homology.

Next month's edition will appear at Southern Fried Science. To submit posts, use the submission form found at the Carnival of Evolution site. And if you like the carnival, help us promote it with a link, and/or consider hosting. More info at the carnival site.